commit
83dfbcc238
11 changed files with 1638 additions and 0 deletions
@ -0,0 +1,139 @@ |
|||||||
|
import os |
||||||
|
|
||||||
|
import cv2 |
||||||
|
import torch |
||||||
|
import torch.nn.functional as F |
||||||
|
from PIL import Image, ImageOps |
||||||
|
from torchvision import transforms |
||||||
|
from torchvision.transforms import InterpolationMode |
||||||
|
|
||||||
|
STITCH_IMG_SIZE = 512 |
||||||
|
STITCH_THRESHOLD = float(os.environ.get("STITCH_THRESHOLD", 0.8)) |
||||||
|
|
||||||
|
TRIM_THR = 30 |
||||||
|
TRIM_BLACK_FRAC = 0.97 |
||||||
|
TRIM_MAX_PX = 600 |
||||||
|
|
||||||
|
def pad_to_square(img: Image.Image, fill: int = 0) -> Image.Image: |
||||||
|
"""Дополненяет изображения полями до квадратного формата, чтобы не искажать при масштабировании.""" |
||||||
|
w, h = img.size |
||||||
|
if w == h: |
||||||
|
return img |
||||||
|
side = max(w, h) |
||||||
|
pl = (side - w) // 2 |
||||||
|
pr = side - w - pl |
||||||
|
pt = (side - h) // 2 |
||||||
|
pb = side - h - pt |
||||||
|
return ImageOps.expand(img, border=(pl, pt, pr, pb), fill=fill) |
||||||
|
|
||||||
|
def trim_black_frame(img: Image.Image) -> Image.Image: |
||||||
|
"""Обрезает чёрную рамку по краям; если обрезка слишком агрессивная — возвращает оригинал.""" |
||||||
|
g = img.convert("L") |
||||||
|
w, h = g.size |
||||||
|
px = g.load() |
||||||
|
step_y = max(1, h // 180) |
||||||
|
step_x = max(1, w // 180) |
||||||
|
|
||||||
|
def col_black_frac(x: int) -> float: |
||||||
|
total = 0 |
||||||
|
black = 0 |
||||||
|
for y in range(0, h, step_y): |
||||||
|
total += 1 |
||||||
|
if px[x, y] <= TRIM_THR: |
||||||
|
black += 1 |
||||||
|
return black / max(1, total) |
||||||
|
|
||||||
|
def row_black_frac(y: int) -> float: |
||||||
|
total = 0 |
||||||
|
black = 0 |
||||||
|
for x in range(0, w, step_x): |
||||||
|
total += 1 |
||||||
|
if px[x, y] <= TRIM_THR: |
||||||
|
black += 1 |
||||||
|
return black / max(1, total) |
||||||
|
|
||||||
|
left = 0 |
||||||
|
for x in range(w): |
||||||
|
if col_black_frac(x) < TRIM_BLACK_FRAC: |
||||||
|
break |
||||||
|
left += 1 |
||||||
|
if left >= TRIM_MAX_PX: |
||||||
|
break |
||||||
|
|
||||||
|
right = 0 |
||||||
|
for x in range(w - 1, -1, -1): |
||||||
|
if col_black_frac(x) < TRIM_BLACK_FRAC: |
||||||
|
break |
||||||
|
right += 1 |
||||||
|
if right >= TRIM_MAX_PX: |
||||||
|
break |
||||||
|
|
||||||
|
top = 0 |
||||||
|
for y in range(h): |
||||||
|
if row_black_frac(y) < TRIM_BLACK_FRAC: |
||||||
|
break |
||||||
|
top += 1 |
||||||
|
if top >= TRIM_MAX_PX: |
||||||
|
break |
||||||
|
|
||||||
|
bottom = 0 |
||||||
|
for y in range(h - 1, -1, -1): |
||||||
|
if row_black_frac(y) < TRIM_BLACK_FRAC: |
||||||
|
break |
||||||
|
bottom += 1 |
||||||
|
if bottom >= TRIM_MAX_PX: |
||||||
|
break |
||||||
|
|
||||||
|
x1 = min(left, w - 2) |
||||||
|
y1 = min(top, h - 2) |
||||||
|
x2 = max(x1 + 2, w - right) |
||||||
|
y2 = max(y1 + 2, h - bottom) |
||||||
|
|
||||||
|
if x2 <= x1 + 1 or y2 <= y1 + 1: |
||||||
|
return img |
||||||
|
if (x2 - x1) < w * 0.35 or (y2 - y1) < h * 0.35: |
||||||
|
return img |
||||||
|
|
||||||
|
return img.crop((x1, y1, x2, y2)) |
||||||
|
|
||||||
|
STITCH_TFM = transforms.Compose([ |
||||||
|
transforms.Lambda(lambda arr: Image.fromarray(cv2.cvtColor(arr, cv2.COLOR_BGR2RGB))), |
||||||
|
transforms.Lambda(trim_black_frame), |
||||||
|
transforms.Lambda(pad_to_square), |
||||||
|
transforms.Resize((STITCH_IMG_SIZE, STITCH_IMG_SIZE), interpolation=InterpolationMode.BILINEAR), |
||||||
|
transforms.ToTensor(), |
||||||
|
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), |
||||||
|
]) |
||||||
|
|
||||||
|
PROJ_TFM = transforms.Compose([ |
||||||
|
transforms.Lambda(lambda arr: Image.fromarray(cv2.cvtColor(arr, cv2.COLOR_BGR2RGB))), |
||||||
|
transforms.Resize((224, 224), interpolation=InterpolationMode.BILINEAR), |
||||||
|
transforms.ToTensor(), |
||||||
|
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), |
||||||
|
]) |
||||||
|
|
||||||
|
def classify_stitched(model, img_bgr): |
||||||
|
"""Модель распознает склеенное/одиночное изображение. Возвращает класс 0(склеенный)/1(одиночный) и уверенность""" |
||||||
|
device = next(model.parameters()).device |
||||||
|
x = STITCH_TFM(img_bgr).unsqueeze(0).to(device) |
||||||
|
with torch.no_grad(): |
||||||
|
logits = model(x) |
||||||
|
if logits.shape[1] == 1 or (logits.ndim == 2 and logits.shape[-1] == 1): |
||||||
|
prob = torch.sigmoid(logits)[0, 0].item() |
||||||
|
pred = 1 if prob >= STITCH_THRESHOLD else 0 |
||||||
|
conf = prob if pred == 1 else (1 - prob) |
||||||
|
return pred, float(conf) |
||||||
|
probs = F.softmax(logits, dim=1) |
||||||
|
conf, pred = probs.max(dim=1) |
||||||
|
return int(pred.item()), float(conf.item()) |
||||||
|
|
||||||
|
def classify_projection(model, img_bgr): |
||||||
|
"""Определяет проекцию 0(боковая)/1(фронтальная), возвращает класс и уверенность.""" |
||||||
|
device = next(model.parameters()).device |
||||||
|
x = PROJ_TFM(img_bgr).unsqueeze(0).to(device) |
||||||
|
with torch.no_grad(): |
||||||
|
logits = model(x) |
||||||
|
probs = F.softmax(logits, dim=1) |
||||||
|
conf, pred = probs.max(dim=1) |
||||||
|
return int(pred.item()), float(conf.item()) |
||||||
|
|
||||||
@ -0,0 +1,78 @@ |
|||||||
|
import os |
||||||
|
from dataclasses import dataclass |
||||||
|
|
||||||
|
|
||||||
|
def _as_bool(value: str, default: bool) -> bool: |
||||||
|
if value is None: |
||||||
|
return default |
||||||
|
return value.strip() not in {"0", "false", "False", ""} |
||||||
|
|
||||||
|
|
||||||
|
def _env_path(key: str, default_path: str) -> str: |
||||||
|
return os.path.abspath(os.environ.get(key, default_path)) |
||||||
|
|
||||||
|
|
||||||
|
@dataclass(frozen=True) |
||||||
|
class ModelPaths: |
||||||
|
classification: str |
||||||
|
projection: str |
||||||
|
detection: str |
||||||
|
|
||||||
|
|
||||||
|
@dataclass(frozen=True) |
||||||
|
class AppConfig: |
||||||
|
models: ModelPaths |
||||||
|
postprocessing: bool |
||||||
|
interpolate_missing: bool |
||||||
|
results_dir: str |
||||||
|
detect_eps_px: float |
||||||
|
detect_min_len: int |
||||||
|
detect_zero_gap: int |
||||||
|
detect_edge_zero_extend: int |
||||||
|
merge_max_gap: int |
||||||
|
min_cobb_main: float |
||||||
|
min_cobb_second_abs: float |
||||||
|
min_cobb_second_rel: float |
||||||
|
min_len_struct_small: int |
||||||
|
min_len_struct_large: int |
||||||
|
min_apex_margin_small: int |
||||||
|
min_apex_margin_large: int |
||||||
|
|
||||||
|
|
||||||
|
def load_config() -> AppConfig: |
||||||
|
base_dir = os.path.dirname(__file__) |
||||||
|
default_results = os.path.join(base_dir, "results") |
||||||
|
|
||||||
|
models = ModelPaths( |
||||||
|
classification=_env_path( |
||||||
|
"MODEL_CLASSIFICATION", |
||||||
|
os.path.join(base_dir, "models", "classification.pt"), |
||||||
|
), |
||||||
|
projection=_env_path( |
||||||
|
"MODEL_PROJECTION", |
||||||
|
os.path.join(base_dir, "models", "projection.pt"), |
||||||
|
), |
||||||
|
detection=_env_path( |
||||||
|
"MODEL_DETECTION", |
||||||
|
os.path.join(base_dir, "models", "1_best_yolo8(L).pt"), |
||||||
|
), |
||||||
|
) |
||||||
|
|
||||||
|
return AppConfig( |
||||||
|
models=models, |
||||||
|
postprocessing=_as_bool(os.environ.get("POSTPROCESSING"), True), |
||||||
|
interpolate_missing=_as_bool(os.environ.get("INTERPOLATE_MISSING"), False), |
||||||
|
results_dir=_env_path("RESULTS_DIR", default_results), |
||||||
|
detect_eps_px=float(os.environ.get("DETECT_EPS_PX", 1.0)), |
||||||
|
detect_min_len=int(os.environ.get("DETECT_MIN_LEN", 2)), |
||||||
|
detect_zero_gap=int(os.environ.get("DETECT_ZERO_GAP", 2)), |
||||||
|
detect_edge_zero_extend=int(os.environ.get("DETECT_EDGE_ZERO_EXTEND", 3)), |
||||||
|
merge_max_gap=int(os.environ.get("MERGE_MAX_GAP", 1)), |
||||||
|
min_cobb_main=float(os.environ.get("MIN_COBB_MAIN", 1.0)), |
||||||
|
min_cobb_second_abs=float(os.environ.get("MIN_COBB_SECOND_ABS", 5.0)), |
||||||
|
min_cobb_second_rel=float(os.environ.get("MIN_COBB_SECOND_REL", 0.35)), |
||||||
|
min_len_struct_small=int(os.environ.get("MIN_LEN_STRUCT_SMALL", 3)), |
||||||
|
min_len_struct_large=int(os.environ.get("MIN_LEN_STRUCT_LARGE", 4)), |
||||||
|
min_apex_margin_small=int(os.environ.get("MIN_APEX_MARGIN_SMALL", 1)), |
||||||
|
min_apex_margin_large=int(os.environ.get("MIN_APEX_MARGIN_LARGE", 2)), |
||||||
|
) |
||||||
@ -0,0 +1,374 @@ |
|||||||
|
import os |
||||||
|
|
||||||
|
import cv2 |
||||||
|
import numpy as np |
||||||
|
|
||||||
|
|
||||||
|
def detect_vertebrae( |
||||||
|
image, |
||||||
|
model_results, |
||||||
|
labelmap, |
||||||
|
debug_save_path=None, |
||||||
|
enable_postprocessing=True, |
||||||
|
interpolate_missing=False, |
||||||
|
spine_sequence=None, |
||||||
|
): |
||||||
|
""" |
||||||
|
Detect vertebrae with optional postprocessing. |
||||||
|
|
||||||
|
Returns: |
||||||
|
dict[label] = [x_center, y_center, width, height, angle, confidence] |
||||||
|
""" |
||||||
|
default_spine_sequence = [ |
||||||
|
"T1", "T2", "T3", "T4", "T5", "T6", "T7", "T8", "T9", "T10", "T11", "T12", |
||||||
|
"L1", "L2", "L3", "L4", "L5", |
||||||
|
] |
||||||
|
|
||||||
|
if spine_sequence is None: |
||||||
|
spine_sequence = default_spine_sequence |
||||||
|
|
||||||
|
label_to_index = {label: idx for idx, label in enumerate(spine_sequence)} |
||||||
|
|
||||||
|
best_boxes = {} |
||||||
|
|
||||||
|
colors = [ |
||||||
|
(0, 0, 255), # Red |
||||||
|
(0, 255, 0), # Green |
||||||
|
(255, 0, 0), # Blue |
||||||
|
(0, 255, 255), # Yellow |
||||||
|
(255, 0, 255), # Magenta |
||||||
|
(255, 255, 0), # Cyan |
||||||
|
(0, 165, 255), # Orange |
||||||
|
(255, 20, 147), # Pink |
||||||
|
(147, 20, 255), # Violet |
||||||
|
(0, 215, 255), # Gold |
||||||
|
(255, 215, 0), # Turquoise |
||||||
|
(255, 105, 180), # Hot pink |
||||||
|
(0, 255, 127), # Spring green |
||||||
|
(255, 69, 0), # Orange red |
||||||
|
(72, 61, 139), # Dark slate blue |
||||||
|
(47, 255, 173), # Aquamarine |
||||||
|
(255, 140, 0), # Dark orange |
||||||
|
] |
||||||
|
|
||||||
|
if model_results: |
||||||
|
result = model_results[0] |
||||||
|
if hasattr(result, "obb") and result.obb is not None and len(result.obb) > 0: |
||||||
|
obb_data = result.obb |
||||||
|
for i in range(len(obb_data)): |
||||||
|
try: |
||||||
|
conf = float(obb_data.conf[i].cpu().numpy()) |
||||||
|
cls_id = int(obb_data.cls[i].cpu().numpy()) |
||||||
|
|
||||||
|
label = labelmap[cls_id] if cls_id < len(labelmap) else f"Unknown_{cls_id}" |
||||||
|
|
||||||
|
if hasattr(obb_data, "xyxyxyxy"): |
||||||
|
box_points = obb_data.xyxyxyxy[i].cpu().numpy() |
||||||
|
elif hasattr(obb_data, "xyxyxyxyn"): |
||||||
|
box_points = obb_data.xyxyxyxyn[i].cpu().numpy() |
||||||
|
h, w = image.shape[:2] |
||||||
|
box_points = box_points.reshape(4, 2) |
||||||
|
box_points[:, 0] *= w |
||||||
|
box_points[:, 1] *= h |
||||||
|
box_points = box_points.flatten() |
||||||
|
else: |
||||||
|
box_points = result.obb.xyxyxyxy[i].cpu().numpy() |
||||||
|
|
||||||
|
points = box_points.reshape(4, 2).astype(np.float32) |
||||||
|
rect = cv2.minAreaRect(points) |
||||||
|
center, size, angle = rect |
||||||
|
|
||||||
|
x_center, y_center = center |
||||||
|
width, height = size |
||||||
|
|
||||||
|
if width < height: |
||||||
|
angle += 90 |
||||||
|
width, height = height, width |
||||||
|
|
||||||
|
result_box = np.array([x_center, y_center, width, height, angle, conf], dtype=np.float32) |
||||||
|
|
||||||
|
if label not in best_boxes or conf > best_boxes[label][-1]: |
||||||
|
best_boxes[label] = result_box |
||||||
|
except Exception as exc: |
||||||
|
print(f"Box parse error: {exc}") |
||||||
|
continue |
||||||
|
|
||||||
|
if enable_postprocessing and best_boxes: |
||||||
|
boxes_list = [(label, box) for label, box in best_boxes.items()] |
||||||
|
|
||||||
|
boxes_list.sort(key=lambda x: x[1][-1], reverse=True) |
||||||
|
kept_boxes = [] |
||||||
|
for label, box in boxes_list: |
||||||
|
x_center, y_center, width, height, _, _ = box |
||||||
|
is_duplicate = False |
||||||
|
|
||||||
|
for kept_label, kept_box in kept_boxes: |
||||||
|
xk, yk, wk, hk, _, _ = kept_box |
||||||
|
dist = np.sqrt((x_center - xk) ** 2 + (y_center - yk) ** 2) |
||||||
|
threshold = 0.3 * min(height, hk) |
||||||
|
|
||||||
|
if dist < threshold: |
||||||
|
is_duplicate = True |
||||||
|
print(f"Duplicate removed: {label} overlaps with {kept_label}") |
||||||
|
break |
||||||
|
|
||||||
|
if not is_duplicate: |
||||||
|
kept_boxes.append((label, box)) |
||||||
|
|
||||||
|
kept_boxes.sort(key=lambda x: x[1][1]) |
||||||
|
|
||||||
|
if kept_boxes: |
||||||
|
valid_boxes = [] |
||||||
|
last_index = -1 |
||||||
|
last_y = -1 |
||||||
|
y_gaps = [] |
||||||
|
|
||||||
|
for label, box in kept_boxes: |
||||||
|
x_center, y_center, width, height, angle, conf = box |
||||||
|
|
||||||
|
if label not in label_to_index: |
||||||
|
print(f"Unknown vertebra skipped: {label}") |
||||||
|
continue |
||||||
|
|
||||||
|
current_index = label_to_index[label] |
||||||
|
|
||||||
|
if last_index == -1: |
||||||
|
valid_boxes.append((label, box)) |
||||||
|
last_index = current_index |
||||||
|
last_y = y_center |
||||||
|
continue |
||||||
|
|
||||||
|
expected_index = last_index + 1 |
||||||
|
|
||||||
|
if current_index == expected_index: |
||||||
|
valid_boxes.append((label, box)) |
||||||
|
y_gaps.append(y_center - last_y) |
||||||
|
last_index = current_index |
||||||
|
last_y = y_center |
||||||
|
continue |
||||||
|
|
||||||
|
if current_index > expected_index: |
||||||
|
valid_boxes.append((label, box)) |
||||||
|
last_index = current_index |
||||||
|
last_y = y_center |
||||||
|
continue |
||||||
|
|
||||||
|
avg_gap = np.median(y_gaps) if y_gaps else 50.0 |
||||||
|
expected_y = last_y + avg_gap |
||||||
|
|
||||||
|
y_diff = abs(y_center - expected_y) |
||||||
|
if y_diff < avg_gap * 0.6 and expected_index < len(spine_sequence): |
||||||
|
new_label = spine_sequence[expected_index] |
||||||
|
new_box = box.copy() |
||||||
|
new_box[5] = -1.0 |
||||||
|
|
||||||
|
valid_boxes.append((new_label, new_box)) |
||||||
|
y_gaps.append(y_center - last_y) |
||||||
|
print(f"Order corrected: {label} -> {new_label} (conf=-1)") |
||||||
|
|
||||||
|
last_index = expected_index |
||||||
|
last_y = y_center |
||||||
|
continue |
||||||
|
|
||||||
|
print(f"Out-of-order skipped: {label} after {valid_boxes[-1][0]}") |
||||||
|
|
||||||
|
if interpolate_missing and len(valid_boxes) > 1: |
||||||
|
valid_boxes.sort(key=lambda x: x[1][1]) |
||||||
|
|
||||||
|
gaps = [] |
||||||
|
for i in range(1, len(valid_boxes)): |
||||||
|
prev_y = valid_boxes[i - 1][1][1] |
||||||
|
curr_y = valid_boxes[i][1][1] |
||||||
|
gaps.append(curr_y - prev_y) |
||||||
|
|
||||||
|
avg_gap = np.median(gaps) if gaps else 0 |
||||||
|
max_allowed_gap = avg_gap * 1.8 if avg_gap > 0 else float("inf") |
||||||
|
|
||||||
|
reliable_angles = [] |
||||||
|
reliable_ratios = [] |
||||||
|
for _, box in valid_boxes: |
||||||
|
_, _, width, height, angle, conf = box |
||||||
|
if conf > 0: |
||||||
|
norm_angle = angle % 180 |
||||||
|
if norm_angle > 90: |
||||||
|
norm_angle -= 180 |
||||||
|
reliable_angles.append(norm_angle) |
||||||
|
|
||||||
|
aspect_ratio = width / max(height, 1) |
||||||
|
reliable_ratios.append(aspect_ratio) |
||||||
|
|
||||||
|
median_angle = np.median(reliable_angles) if reliable_angles else 0.0 |
||||||
|
median_ratio = np.median(reliable_ratios) if reliable_ratios else 2.0 |
||||||
|
|
||||||
|
new_boxes = [] |
||||||
|
for i in range(len(valid_boxes)): |
||||||
|
current_label, current_box = valid_boxes[i] |
||||||
|
current_idx = label_to_index[current_label] |
||||||
|
new_boxes.append((current_label, current_box)) |
||||||
|
|
||||||
|
if i < len(valid_boxes) - 1: |
||||||
|
next_label, next_box = valid_boxes[i + 1] |
||||||
|
next_idx = label_to_index[next_label] |
||||||
|
|
||||||
|
y_gap = next_box[1] - current_box[1] |
||||||
|
index_gap = next_idx - current_idx |
||||||
|
|
||||||
|
if index_gap > 1 and y_gap > max_allowed_gap * 0.7: |
||||||
|
num_missing = index_gap - 1 |
||||||
|
print(f"Missing between {current_label} and {next_label}: {num_missing}") |
||||||
|
|
||||||
|
x1, y1, w1, h1, ang1, _ = current_box |
||||||
|
x2, y2, w2, h2, ang2, _ = next_box |
||||||
|
|
||||||
|
for k in range(1, num_missing + 1): |
||||||
|
missing_idx = current_idx + k |
||||||
|
if missing_idx >= len(spine_sequence): |
||||||
|
continue |
||||||
|
|
||||||
|
missing_label = spine_sequence[missing_idx] |
||||||
|
fraction = k / index_gap |
||||||
|
|
||||||
|
x_center = (x1 + x2) / 2 |
||||||
|
y_center = y1 + fraction * (y2 - y1) |
||||||
|
|
||||||
|
avg_width = (w1 + w2) / 2 |
||||||
|
avg_height = (h1 + h2) / 2 |
||||||
|
|
||||||
|
if median_ratio > 1: |
||||||
|
width = avg_width |
||||||
|
height = width / median_ratio |
||||||
|
else: |
||||||
|
height = avg_height |
||||||
|
width = height * median_ratio |
||||||
|
|
||||||
|
norm_ang1 = ang1 % 180 |
||||||
|
norm_ang2 = ang2 % 180 |
||||||
|
|
||||||
|
if abs(norm_ang1 - norm_ang2) > 90: |
||||||
|
if norm_ang1 > norm_ang2: |
||||||
|
norm_ang1 -= 180 |
||||||
|
else: |
||||||
|
norm_ang2 -= 180 |
||||||
|
|
||||||
|
angle = norm_ang1 + fraction * (norm_ang2 - norm_ang1) |
||||||
|
angle = (angle + 90) % 180 - 90 |
||||||
|
|
||||||
|
if reliable_angles: |
||||||
|
angle = 0.7 * angle + 0.3 * median_angle |
||||||
|
|
||||||
|
if height > width: |
||||||
|
width, height = height, width |
||||||
|
angle = (angle + 90) % 180 |
||||||
|
|
||||||
|
conf = -0.5 |
||||||
|
|
||||||
|
interpolated_box = np.array( |
||||||
|
[x_center, y_center, width, height, angle, conf], |
||||||
|
dtype=np.float32, |
||||||
|
) |
||||||
|
|
||||||
|
print( |
||||||
|
"Interpolated: " |
||||||
|
f"{missing_label} x={x_center:.1f} y={y_center:.1f} " |
||||||
|
f"w={width:.1f} h={height:.1f} angle={angle:.2f}" |
||||||
|
) |
||||||
|
new_boxes.append((missing_label, interpolated_box)) |
||||||
|
|
||||||
|
new_boxes.sort(key=lambda x: x[1][1]) |
||||||
|
valid_boxes = new_boxes |
||||||
|
|
||||||
|
best_boxes = {label: box for label, box in valid_boxes} |
||||||
|
|
||||||
|
if debug_save_path: |
||||||
|
if len(image.shape) == 2: |
||||||
|
vis_image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR) |
||||||
|
elif image.shape[2] == 3: |
||||||
|
vis_image = image.copy() |
||||||
|
else: |
||||||
|
vis_image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) |
||||||
|
|
||||||
|
for idx, (label, box) in enumerate(best_boxes.items()): |
||||||
|
try: |
||||||
|
x_center, y_center, width, height, angle, conf = box |
||||||
|
|
||||||
|
color = colors[idx % len(colors)] |
||||||
|
|
||||||
|
is_corrected = conf < 0 |
||||||
|
thickness = 4 if is_corrected else 3 |
||||||
|
alpha = 0.35 if is_corrected else 0.2 |
||||||
|
|
||||||
|
rect = ((x_center, y_center), (width, height), angle) |
||||||
|
box_points = cv2.boxPoints(rect) |
||||||
|
box_points = np.int64(box_points) |
||||||
|
|
||||||
|
contour_color = (0, 0, 255) if is_corrected else color |
||||||
|
cv2.drawContours(vis_image, [box_points], 0, contour_color, thickness) |
||||||
|
|
||||||
|
overlay = vis_image.copy() |
||||||
|
fill_color = (0, 0, 255) if is_corrected else color |
||||||
|
cv2.fillPoly(overlay, [box_points], fill_color) |
||||||
|
cv2.addWeighted(overlay, alpha, vis_image, 1 - alpha, 0, vis_image) |
||||||
|
|
||||||
|
if is_corrected: |
||||||
|
text = f"{label} CV({conf:.1f})" |
||||||
|
else: |
||||||
|
text = f"{label} ({conf:.3f})" |
||||||
|
|
||||||
|
font = cv2.FONT_HERSHEY_SIMPLEX |
||||||
|
font_scale = 0.6 |
||||||
|
thickness = 2 |
||||||
|
|
||||||
|
(text_width, text_height), _ = cv2.getTextSize(text, font, font_scale, thickness) |
||||||
|
text_x = int(x_center - text_width / 2) |
||||||
|
text_y = int(y_center + text_height / 2) |
||||||
|
|
||||||
|
padding = 5 |
||||||
|
bg_rect = [ |
||||||
|
(text_x - padding, text_y - text_height - padding), |
||||||
|
(text_x + text_width + padding, text_y + padding), |
||||||
|
] |
||||||
|
|
||||||
|
text_overlay = vis_image.copy() |
||||||
|
bg_color = (0, 0, 100) if is_corrected else (0, 0, 0) |
||||||
|
cv2.rectangle(text_overlay, bg_rect[0], bg_rect[1], bg_color, -1) |
||||||
|
|
||||||
|
text_alpha = 0.7 |
||||||
|
cv2.addWeighted(text_overlay, text_alpha, vis_image, 1 - text_alpha, 0, vis_image) |
||||||
|
|
||||||
|
text_color = (255, 255, 255) if not is_corrected else (255, 200, 200) |
||||||
|
cv2.putText( |
||||||
|
vis_image, |
||||||
|
text, |
||||||
|
(text_x, text_y), |
||||||
|
font, |
||||||
|
font_scale, |
||||||
|
text_color, |
||||||
|
thickness, |
||||||
|
) |
||||||
|
|
||||||
|
center_color = (0, 0, 255) if is_corrected else (255, 255, 255) |
||||||
|
cv2.circle(vis_image, (int(x_center), int(y_center)), 5, center_color, -1) |
||||||
|
cv2.circle(vis_image, (int(x_center), int(y_center)), 2, (0, 0, 0), -1) |
||||||
|
except Exception as exc: |
||||||
|
print(f"Draw error for {label}: {exc}") |
||||||
|
continue |
||||||
|
|
||||||
|
dir_path = os.path.dirname(debug_save_path) |
||||||
|
if dir_path: |
||||||
|
os.makedirs(dir_path, exist_ok=True) |
||||||
|
|
||||||
|
try: |
||||||
|
if len(vis_image.shape) == 2: |
||||||
|
vis_image = cv2.cvtColor(vis_image, cv2.COLOR_GRAY2BGR) |
||||||
|
|
||||||
|
cv2.imwrite(debug_save_path, vis_image, [cv2.IMWRITE_JPEG_QUALITY, 95]) |
||||||
|
print(f"Debug saved: {debug_save_path}") |
||||||
|
print(f"Detections: {len(best_boxes)}") |
||||||
|
|
||||||
|
corrected_count = sum(1 for box in best_boxes.values() if box[5] < 0) |
||||||
|
if corrected_count > 0: |
||||||
|
print(f"Corrected order: {corrected_count}") |
||||||
|
except Exception as exc: |
||||||
|
print(f"Debug save error: {exc}") |
||||||
|
|
||||||
|
return {label: box.astype(float).tolist() for label, box in best_boxes.items()} |
||||||
@ -0,0 +1,191 @@ |
|||||||
|
import os |
||||||
|
from typing import Optional |
||||||
|
|
||||||
|
import cv2 |
||||||
|
import numpy as np |
||||||
|
import pydicom |
||||||
|
|
||||||
|
def read_dicom(path: str) -> np.ndarray: |
||||||
|
ds = pydicom.dcmread(path) |
||||||
|
img = ds.pixel_array |
||||||
|
|
||||||
|
if getattr(ds, "PhotometricInterpretation", "") == "MONOCHROME1": |
||||||
|
img = np.max(img) - img |
||||||
|
|
||||||
|
img = img.astype(np.float32) |
||||||
|
img -= img.min() |
||||||
|
if img.max() > 0: |
||||||
|
img /= img.max() |
||||||
|
img = (img * 255.0).clip(0, 255).astype(np.uint8) |
||||||
|
|
||||||
|
if img.ndim == 2: |
||||||
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) |
||||||
|
elif img.shape[2] == 3: |
||||||
|
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) |
||||||
|
|
||||||
|
return img |
||||||
|
|
||||||
|
|
||||||
|
def save_secondary_capture( |
||||||
|
original_dicom_path: str, |
||||||
|
img_bgr: np.ndarray, |
||||||
|
out_path: str, |
||||||
|
series_description: str = "RG-SCOLIOSIS-CONTOUR", |
||||||
|
overlay_text: Optional[str] = None, |
||||||
|
): |
||||||
|
import pydicom |
||||||
|
from pydicom.uid import generate_uid |
||||||
|
|
||||||
|
ds = pydicom.dcmread(original_dicom_path) |
||||||
|
|
||||||
|
img_draw = img_bgr.copy() |
||||||
|
if overlay_text: |
||||||
|
cv2.putText( |
||||||
|
img_draw, |
||||||
|
overlay_text, |
||||||
|
(20, 40), |
||||||
|
cv2.FONT_HERSHEY_SIMPLEX, |
||||||
|
1.0, |
||||||
|
(0, 255, 0), |
||||||
|
2, |
||||||
|
) |
||||||
|
|
||||||
|
img_rgb = cv2.cvtColor(img_draw, cv2.COLOR_BGR2RGB) |
||||||
|
rows, cols = img_rgb.shape[:2] |
||||||
|
|
||||||
|
ds.SOPClassUID = "1.2.840.10008.5.1.4.1.1.7" |
||||||
|
ds.SOPInstanceUID = generate_uid() |
||||||
|
ds.SeriesInstanceUID = generate_uid() |
||||||
|
ds.Modality = "OT" |
||||||
|
ds.SeriesDescription = series_description |
||||||
|
|
||||||
|
if "SeriesNumber" in ds: |
||||||
|
try: |
||||||
|
ds.SeriesNumber = int(ds.SeriesNumber) + 1000 |
||||||
|
except Exception: |
||||||
|
ds.SeriesNumber = 1000 |
||||||
|
else: |
||||||
|
ds.SeriesNumber = 1000 |
||||||
|
|
||||||
|
ds.Rows = rows |
||||||
|
ds.Columns = cols |
||||||
|
ds.SamplesPerPixel = 3 |
||||||
|
ds.PhotometricInterpretation = "RGB" |
||||||
|
ds.PlanarConfiguration = 0 |
||||||
|
ds.BitsAllocated = 8 |
||||||
|
ds.BitsStored = 8 |
||||||
|
ds.HighBit = 7 |
||||||
|
ds.PixelRepresentation = 0 |
||||||
|
ds.PixelData = img_rgb.tobytes() |
||||||
|
|
||||||
|
os.makedirs(os.path.dirname(out_path), exist_ok=True) |
||||||
|
ds.save_as(out_path, write_like_original=False) |
||||||
|
|
||||||
|
|
||||||
|
def save_dicom_sr( |
||||||
|
original_dicom_path: str, |
||||||
|
description_text: str, |
||||||
|
conclusion_text: str, |
||||||
|
out_path: str, |
||||||
|
series_description: str = "SCOLIOSIS_SR", |
||||||
|
extra_struct: Optional[dict] = None, |
||||||
|
): |
||||||
|
import datetime as _dt |
||||||
|
import pydicom |
||||||
|
from pydicom.dataset import Dataset, FileDataset |
||||||
|
from pydicom.uid import ExplicitVRLittleEndian, generate_uid |
||||||
|
|
||||||
|
src = pydicom.dcmread(original_dicom_path) |
||||||
|
|
||||||
|
file_meta = Dataset() |
||||||
|
file_meta.MediaStorageSOPClassUID = "1.2.840.10008.5.1.4.1.1.88.11" |
||||||
|
file_meta.MediaStorageSOPInstanceUID = generate_uid() |
||||||
|
file_meta.TransferSyntaxUID = ExplicitVRLittleEndian |
||||||
|
file_meta.ImplementationClassUID = generate_uid() |
||||||
|
|
||||||
|
ds = FileDataset(out_path, {}, file_meta=file_meta, preamble=b"\0" * 128) |
||||||
|
|
||||||
|
for tag in ( |
||||||
|
"PatientName", |
||||||
|
"PatientID", |
||||||
|
"PatientBirthDate", |
||||||
|
"PatientSex", |
||||||
|
"StudyInstanceUID", |
||||||
|
"StudyID", |
||||||
|
"AccessionNumber", |
||||||
|
"StudyDate", |
||||||
|
"StudyTime", |
||||||
|
): |
||||||
|
if tag in src: |
||||||
|
ds[tag] = src[tag] |
||||||
|
|
||||||
|
ds.SOPClassUID = file_meta.MediaStorageSOPClassUID |
||||||
|
ds.SOPInstanceUID = file_meta.MediaStorageSOPInstanceUID |
||||||
|
ds.SeriesInstanceUID = generate_uid() |
||||||
|
ds.Modality = "SR" |
||||||
|
ds.SeriesDescription = series_description |
||||||
|
ds.SeriesNumber = 2000 |
||||||
|
ds.InstanceNumber = 1 |
||||||
|
|
||||||
|
if "SpecificCharacterSet" in src: |
||||||
|
ds.SpecificCharacterSet = src.SpecificCharacterSet |
||||||
|
else: |
||||||
|
ds.SpecificCharacterSet = "ISO_IR 192" |
||||||
|
|
||||||
|
now = _dt.datetime.now() |
||||||
|
ds.ContentDate = now.strftime("%Y%m%d") |
||||||
|
ds.ContentTime = now.strftime("%H%M%S") |
||||||
|
|
||||||
|
root = Dataset() |
||||||
|
root.ValueType = "CONTAINER" |
||||||
|
root.ContinuityOfContent = "SEPARATE" |
||||||
|
root.ConceptNameCodeSequence = [Dataset()] |
||||||
|
root.ConceptNameCodeSequence[0].CodeValue = "11528-7" |
||||||
|
root.ConceptNameCodeSequence[0].CodingSchemeDesignator = "LN" |
||||||
|
root.ConceptNameCodeSequence[0].CodeMeaning = "Imaging Report" |
||||||
|
|
||||||
|
desc_item = Dataset() |
||||||
|
desc_item.ValueType = "TEXT" |
||||||
|
desc_item.ConceptNameCodeSequence = [Dataset()] |
||||||
|
desc_item.ConceptNameCodeSequence[0].CodeValue = "121070" |
||||||
|
desc_item.ConceptNameCodeSequence[0].CodingSchemeDesignator = "DCM" |
||||||
|
desc_item.ConceptNameCodeSequence[0].CodeMeaning = "Findings" |
||||||
|
desc_item.TextValue = str(description_text) |
||||||
|
|
||||||
|
concl_item = Dataset() |
||||||
|
concl_item.ValueType = "TEXT" |
||||||
|
concl_item.ConceptNameCodeSequence = [Dataset()] |
||||||
|
concl_item.ConceptNameCodeSequence[0].CodeValue = "121106" |
||||||
|
concl_item.ConceptNameCodeSequence[0].CodingSchemeDesignator = "DCM" |
||||||
|
concl_item.ConceptNameCodeSequence[0].CodeMeaning = "Summary" |
||||||
|
concl_item.TextValue = str(conclusion_text) |
||||||
|
|
||||||
|
content_items = [desc_item, concl_item] |
||||||
|
|
||||||
|
if extra_struct: |
||||||
|
def _text_item(code, meaning, value, scheme="DCM"): |
||||||
|
item = Dataset() |
||||||
|
item.ValueType = "TEXT" |
||||||
|
item.ConceptNameCodeSequence = [Dataset()] |
||||||
|
item.ConceptNameCodeSequence[0].CodeValue = code |
||||||
|
item.ConceptNameCodeSequence[0].CodingSchemeDesignator = scheme |
||||||
|
item.ConceptNameCodeSequence[0].CodeMeaning = meaning |
||||||
|
item.TextValue = str(value) |
||||||
|
return item |
||||||
|
|
||||||
|
if "degree_class" in extra_struct: |
||||||
|
content_items.append(_text_item("SCL-DEGREE", "Scoliosis degree class (1-4, 0=none)", extra_struct["degree_class"])) |
||||||
|
if "scoliosis_type" in extra_struct: |
||||||
|
content_items.append(_text_item("SCL-TYPE", "Scoliosis type", extra_struct["scoliosis_type"])) |
||||||
|
if "main_cobb" in extra_struct: |
||||||
|
content_items.append(_text_item("SCL-MAIN-COBB", "Main Cobb angle, deg", f"{extra_struct['main_cobb']:.1f}")) |
||||||
|
if "prob_scoliosis" in extra_struct: |
||||||
|
content_items.append(_text_item("SCL-PROB", "Probability of scoliosis (0-1)", f"{extra_struct['prob_scoliosis']:.2f}")) |
||||||
|
|
||||||
|
root.ContentSequence = content_items |
||||||
|
ds.ContentSequence = [root] |
||||||
|
ds.CompletionFlag = "COMPLETE" |
||||||
|
ds.VerificationFlag = "UNVERIFIED" |
||||||
|
|
||||||
|
os.makedirs(os.path.dirname(out_path), exist_ok=True) |
||||||
|
ds.save_as(out_path, write_like_original=False) |
||||||
@ -0,0 +1,88 @@ |
|||||||
|
import os |
||||||
|
import threading |
||||||
|
from typing import Optional |
||||||
|
|
||||||
|
import torch |
||||||
|
import torch.nn as nn |
||||||
|
from torchvision import models |
||||||
|
from ultralytics import YOLO |
||||||
|
|
||||||
|
from config import load_config |
||||||
|
|
||||||
|
_LOCK = threading.Lock() |
||||||
|
_CACHE = {} |
||||||
|
_CFG = load_config() |
||||||
|
|
||||||
|
def _cache_key(kind: str, path: str, device: Optional[str]) -> str: |
||||||
|
return f"{kind}|{os.path.abspath(path)}|{device or 'auto'}" |
||||||
|
|
||||||
|
def _load_shufflenet(path: str, device: Optional[str]): |
||||||
|
"""Загружает shufflenet‑классификатор из state_dict""" |
||||||
|
sd = torch.load(path, map_location=device or "cpu") |
||||||
|
num_classes = sd["fc.weight"].shape[0] |
||||||
|
candidates = [ |
||||||
|
models.shufflenet_v2_x0_5(weights=None), |
||||||
|
models.shufflenet_v2_x1_0(weights=None), |
||||||
|
] |
||||||
|
model = None |
||||||
|
for m in candidates: |
||||||
|
m.fc = nn.Linear(m.fc.in_features, num_classes) |
||||||
|
try: |
||||||
|
m.load_state_dict(sd, strict=True) |
||||||
|
model = m |
||||||
|
break |
||||||
|
except Exception: |
||||||
|
continue |
||||||
|
if model is None: |
||||||
|
raise RuntimeError(f"Cannot load state_dict from {path} into supported shufflenet variants") |
||||||
|
model.eval() |
||||||
|
if device: |
||||||
|
model.to(device) |
||||||
|
return model |
||||||
|
|
||||||
|
def _load_mobilenet_v3_large(path: str, device: Optional[str]): |
||||||
|
"""Загружает mobilenet_v3_large из чекпойнта, настраивает число классов, переносит на device, ставит eval()""" |
||||||
|
ckpt = torch.load(path, map_location=device or "cpu") |
||||||
|
sd = ckpt.get("model_state", ckpt) |
||||||
|
num_classes = sd["classifier.3.weight"].shape[0] |
||||||
|
model = models.mobilenet_v3_large(weights=None) |
||||||
|
model.classifier[3] = nn.Linear(model.classifier[3].in_features, num_classes) |
||||||
|
model.load_state_dict(sd, strict=True) |
||||||
|
model.eval() |
||||||
|
if device: |
||||||
|
model.to(device) |
||||||
|
return model |
||||||
|
|
||||||
|
def get_detection_model(device: Optional[str] = None, model_path: Optional[str] = None): |
||||||
|
"""Получает YOLO‑детектор: берёт путь (из аргумента или конфига), достаёт из кеша или загружает и кэширует""" |
||||||
|
path = model_path or _CFG.models.detection |
||||||
|
key = _cache_key("detection", path, device) |
||||||
|
with _LOCK: |
||||||
|
if key not in _CACHE: |
||||||
|
model = YOLO(path) |
||||||
|
if device: |
||||||
|
try: |
||||||
|
model.to(device) |
||||||
|
except Exception: |
||||||
|
if hasattr(model, "model"): |
||||||
|
model.model.to(device) |
||||||
|
_CACHE[key] = model |
||||||
|
return _CACHE[key] |
||||||
|
|
||||||
|
def get_classification_model(device: Optional[str] = None, model_path: Optional[str] = None): |
||||||
|
"""Получает классификатор stitched/single (mobilenet): кеш + загрузка при первом вызове""" |
||||||
|
path = model_path or _CFG.models.classification |
||||||
|
key = _cache_key("classification", path, device) |
||||||
|
with _LOCK: |
||||||
|
if key not in _CACHE: |
||||||
|
_CACHE[key] = _load_mobilenet_v3_large(path, device) |
||||||
|
return _CACHE[key] |
||||||
|
|
||||||
|
def get_projection_model(device: Optional[str] = None, model_path: Optional[str] = None): |
||||||
|
"""Получает классификатор проекции (shufflenet): кеш + загрузка при первом вызове""" |
||||||
|
path = model_path or _CFG.models.projection |
||||||
|
key = _cache_key("projection", path, device) |
||||||
|
with _LOCK: |
||||||
|
if key not in _CACHE: |
||||||
|
_CACHE[key] = _load_shufflenet(path, device) |
||||||
|
return _CACHE[key] |
||||||
@ -0,0 +1,274 @@ |
|||||||
|
import os |
||||||
|
import sys |
||||||
|
|
||||||
|
import cv2 |
||||||
|
import numpy as np |
||||||
|
|
||||||
|
from classification import classify_projection, classify_stitched |
||||||
|
from config import load_config |
||||||
|
from detect_vertebrae import detect_vertebrae |
||||||
|
from io_dicom import read_dicom, save_dicom_sr, save_secondary_capture |
||||||
|
from model_loader import ( |
||||||
|
get_classification_model, |
||||||
|
get_detection_model, |
||||||
|
get_projection_model, |
||||||
|
) |
||||||
|
from report_builder import build_scoliosis_description |
||||||
|
from scoliosis_arcs import ( |
||||||
|
build_conclusion, |
||||||
|
cobb_for_arc, |
||||||
|
detect_arcs_from_dx, |
||||||
|
merge_arcs, |
||||||
|
split_arcs, |
||||||
|
scoliosis_type, |
||||||
|
) |
||||||
|
from scoliosis_geometry import ( |
||||||
|
arc_centerline, |
||||||
|
fit_spine_axis_dx, |
||||||
|
fit_spine_axis_dx_endpoints, |
||||||
|
fit_spine_axis_dx_local, |
||||||
|
smooth_1d, |
||||||
|
) |
||||||
|
from vis import draw_arc_contours |
||||||
|
|
||||||
|
CLASS_NAMES = { |
||||||
|
0: "L1", 1: "L2", 2: "L3", 3: "L4", 4: "L5", |
||||||
|
5: "T1", 6: "T2", 7: "T3", 8: "T4", 9: "T5", |
||||||
|
10: "T6", 11: "T7", 12: "T8", 13: "T9", 14: "T10", |
||||||
|
15: "T11", 16: "T12", |
||||||
|
} |
||||||
|
|
||||||
|
CONFIG = load_config() |
||||||
|
POSTPROCESSING = CONFIG.postprocessing |
||||||
|
INTERPOLATE_MISSING = CONFIG.interpolate_missing |
||||||
|
|
||||||
|
def build_labelmap(class_names): |
||||||
|
"""Делает список меток по индексам (0..max), |
||||||
|
чтобы по cls_id получить имя позвонка.""" |
||||||
|
max_id = max(class_names) |
||||||
|
return [class_names.get(i, f"Unknown_{i}") for i in range(max_id + 1)] |
||||||
|
|
||||||
|
def vertebrae_from_detect_result(detect_result): |
||||||
|
"""Преобразует результат детекции в список позвонков: |
||||||
|
центр, коробка, угол, уверенность; сортирует по Y.""" |
||||||
|
vertebrae = [] |
||||||
|
for label, box in detect_result.items(): |
||||||
|
x_center, y_center, width, height, angle, conf = box |
||||||
|
rect = ( |
||||||
|
(float(x_center), float(y_center)), |
||||||
|
(float(width), float(height)), |
||||||
|
float(angle), |
||||||
|
) |
||||||
|
pts = cv2.boxPoints(rect).astype(np.float32) |
||||||
|
center = np.array([x_center, y_center], dtype=np.float32) |
||||||
|
vertebrae.append({ |
||||||
|
"id": label, |
||||||
|
"l": label, |
||||||
|
"c": center, |
||||||
|
"b": pts, |
||||||
|
"ang": float(angle), |
||||||
|
"conf": float(conf), |
||||||
|
}) |
||||||
|
vertebrae.sort(key=lambda x: x["c"][1]) |
||||||
|
return vertebrae |
||||||
|
|
||||||
|
def run_pipeline(img_bgr, vertebrae): |
||||||
|
"""Основная логика анализа: строит оси/сигналы, находит дуги, считает Cobb, |
||||||
|
делит дуги на структурные/минорные, формирует заключение и итоговые метрики.""" |
||||||
|
if img_bgr is None: |
||||||
|
raise ValueError("img_bgr is None") |
||||||
|
|
||||||
|
h, w = img_bgr.shape[:2] |
||||||
|
|
||||||
|
dx_global = fit_spine_axis_dx(vertebrae) |
||||||
|
dx_seg = smooth_1d(dx_global, iters=3, alpha=0.25) |
||||||
|
|
||||||
|
dx_local = fit_spine_axis_dx_local(vertebrae, window=7) |
||||||
|
dx_cobb = smooth_1d(dx_local, iters=3, alpha=0.25) |
||||||
|
|
||||||
|
dx_ref = smooth_1d(fit_spine_axis_dx_endpoints(vertebrae), iters=3, alpha=0.25) |
||||||
|
|
||||||
|
arcs = detect_arcs_from_dx( |
||||||
|
dx_cobb, |
||||||
|
eps_px=CONFIG.detect_eps_px, |
||||||
|
min_len=CONFIG.detect_min_len, |
||||||
|
zero_gap=CONFIG.detect_zero_gap, |
||||||
|
edge_zero_extend=CONFIG.detect_edge_zero_extend, |
||||||
|
) |
||||||
|
arcs = merge_arcs(arcs, dx_ref, max_gap=CONFIG.merge_max_gap) |
||||||
|
|
||||||
|
global_amp = float(np.max(np.abs(dx_seg)) + 1e-6) |
||||||
|
|
||||||
|
arc_infos = [] |
||||||
|
for (s, e) in arcs: |
||||||
|
info = cobb_for_arc(vertebrae, s, e, dx_cobb, dx_ref) |
||||||
|
info["amp_rel"] = float(np.max(np.abs(dx_seg[s:e + 1])) / global_amp) |
||||||
|
info["apex_margin"] = int(min(info["apex_idx"] - s, e - info["apex_idx"])) |
||||||
|
info["centerline_pts"] = arc_centerline(vertebrae, info, smooth_window=5) |
||||||
|
arc_infos.append(info) |
||||||
|
|
||||||
|
n = len(vertebrae) |
||||||
|
min_len_struct = CONFIG.min_len_struct_small if n <= 7 else CONFIG.min_len_struct_large |
||||||
|
min_apex_margin_struct = CONFIG.min_apex_margin_small if n <= 7 else CONFIG.min_apex_margin_large |
||||||
|
|
||||||
|
structural, minor = split_arcs( |
||||||
|
arc_infos, |
||||||
|
min_cobb_main=CONFIG.min_cobb_main, |
||||||
|
min_cobb_second_abs=CONFIG.min_cobb_second_abs, |
||||||
|
min_cobb_second_rel=CONFIG.min_cobb_second_rel, |
||||||
|
min_len_struct=min_len_struct, |
||||||
|
min_apex_margin_struct=min_apex_margin_struct, |
||||||
|
) |
||||||
|
|
||||||
|
conclusion = build_conclusion(arc_infos, structural=structural, minor=minor) |
||||||
|
|
||||||
|
main = max(arc_infos, key=lambda x: x["cobb_deg"]) if arc_infos else None |
||||||
|
degree_class = 0 |
||||||
|
prob_scoliosis = 0.0 |
||||||
|
if main: |
||||||
|
cd = main["cobb_deg"] |
||||||
|
if cd >= 50: |
||||||
|
degree_class = 4 |
||||||
|
elif cd >= 26: |
||||||
|
degree_class = 3 |
||||||
|
elif cd >= 11: |
||||||
|
degree_class = 2 |
||||||
|
elif cd >= 1: |
||||||
|
degree_class = 1 |
||||||
|
prob_scoliosis = min(1.0, cd / 50.0) |
||||||
|
|
||||||
|
scol_type = "C-сколиоз" |
||||||
|
if structural: |
||||||
|
scol_type = scoliosis_type(structural) |
||||||
|
else: |
||||||
|
scol_type = "нет сколиоза" |
||||||
|
|
||||||
|
return { |
||||||
|
"img_bgr": img_bgr, |
||||||
|
"h": h, "w": w, |
||||||
|
"vertebrae": vertebrae, |
||||||
|
"arc_infos": arc_infos, |
||||||
|
"structural": structural, |
||||||
|
"minor": minor, |
||||||
|
"conclusion": conclusion, |
||||||
|
"main_arc": main, |
||||||
|
"degree_class": degree_class, |
||||||
|
"scoliosis_type": scol_type, |
||||||
|
"prob_scoliosis": prob_scoliosis, |
||||||
|
} |
||||||
|
|
||||||
|
def _split_if_stitched(img_bgr, cls_model): |
||||||
|
"""Проверяет, “сшитый” ли снимок. |
||||||
|
Если да — делит на левую/правую половины, |
||||||
|
иначе возвращает исходный.""" |
||||||
|
pred, conf = classify_stitched(cls_model, img_bgr) |
||||||
|
if pred != 1: # 0 = single |
||||||
|
return [img_bgr], {"classification": pred, "classification_conf": conf} |
||||||
|
h, w = img_bgr.shape[:2] |
||||||
|
mid = w // 2 |
||||||
|
left = img_bgr[:, :mid].copy() |
||||||
|
right = img_bgr[:, mid:].copy() |
||||||
|
return [left, right], {"classification": pred, "classification_conf": conf} |
||||||
|
|
||||||
|
def _select_frontal(images, proj_model): |
||||||
|
"""Из списка изображений выбирает фронтальную проекцию; |
||||||
|
если нет — берёт с максимальной уверенностью.""" |
||||||
|
best_img = images[0] |
||||||
|
best_meta = {"projection": None, "projection_conf": None} |
||||||
|
for img in images: |
||||||
|
pred, conf = classify_projection(proj_model, img) |
||||||
|
if pred == 1: # 1 = frontal |
||||||
|
return img, {"projection": pred, "projection_conf": conf} |
||||||
|
if best_meta["projection_conf"] is None or conf > best_meta["projection_conf"]: |
||||||
|
best_img, best_meta = img, {"projection": pred, "projection_conf": conf} |
||||||
|
return best_img, best_meta |
||||||
|
|
||||||
|
def run_scoliosis_pipeline(infer_dicom_path, model=None, model_path=None, out_dir=None): |
||||||
|
"""Полный пайплайн: читает DICOM, выбирает проекцию, детектит позвонки, |
||||||
|
запускает run_pipeline, сохраняет SC и SR DICOM, возвращает пути и результат.""" |
||||||
|
model_path = model_path or CONFIG.models.detection |
||||||
|
base_results_dir = out_dir or CONFIG.results_dir |
||||||
|
image_stem = os.path.splitext(os.path.basename(infer_dicom_path))[0] |
||||||
|
run_dir = os.path.join(base_results_dir, f"{image_stem}_result") |
||||||
|
os.makedirs(run_dir, exist_ok=True) |
||||||
|
|
||||||
|
det_model = model or get_detection_model(model_path=model_path) |
||||||
|
cls_model = get_classification_model() |
||||||
|
proj_model = get_projection_model() |
||||||
|
|
||||||
|
img_bgr_full = read_dicom(infer_dicom_path) |
||||||
|
split_imgs, cls_meta = _split_if_stitched(img_bgr_full, cls_model) |
||||||
|
img_bgr, proj_meta = _select_frontal(split_imgs, proj_model) |
||||||
|
print(f"classification pred={cls_meta['classification']} conf={cls_meta['classification_conf']:.3f}; " |
||||||
|
f"projection pred={proj_meta['projection']} conf={proj_meta['projection_conf']:.3f}") |
||||||
|
|
||||||
|
yolo_results = det_model(img_bgr, verbose=False) |
||||||
|
|
||||||
|
labelmap = build_labelmap(CLASS_NAMES) |
||||||
|
detect_result = detect_vertebrae( |
||||||
|
img_bgr, |
||||||
|
yolo_results, |
||||||
|
labelmap, |
||||||
|
enable_postprocessing=POSTPROCESSING, |
||||||
|
interpolate_missing=INTERPOLATE_MISSING, |
||||||
|
) |
||||||
|
|
||||||
|
if not detect_result: |
||||||
|
return { |
||||||
|
"ok": False, |
||||||
|
"reason": "no_detections", |
||||||
|
} |
||||||
|
|
||||||
|
vertebrae = vertebrae_from_detect_result(detect_result) |
||||||
|
result = run_pipeline(img_bgr, vertebrae) |
||||||
|
|
||||||
|
sc_img = draw_arc_contours(img_bgr, vertebrae, result["structural"]) |
||||||
|
sc_out_path = os.path.join(run_dir, f"sc_{image_stem}.dcm") |
||||||
|
overlay_txt = f"prob={result.get('prob_scoliosis', 0.0):.2f} deg={result.get('degree_class', 0)} type={result.get('scoliosis_type', '')}" |
||||||
|
save_secondary_capture( |
||||||
|
infer_dicom_path, |
||||||
|
sc_img, |
||||||
|
sc_out_path, |
||||||
|
series_description="RG-SCOLIOSIS-CONTOUR", |
||||||
|
overlay_text=overlay_txt, |
||||||
|
) |
||||||
|
|
||||||
|
sr_desc = build_scoliosis_description(result["arc_infos"]) |
||||||
|
sr_out_path = os.path.join(run_dir, f"sr_{image_stem}.dcm") |
||||||
|
main_cobb = result["main_arc"]["cobb_deg"] if result.get("main_arc") else 0.0 |
||||||
|
save_dicom_sr( |
||||||
|
infer_dicom_path, |
||||||
|
sr_desc, |
||||||
|
result["conclusion"], |
||||||
|
sr_out_path, |
||||||
|
series_description="RG-SCOLIOSIS-SR", |
||||||
|
extra_struct={ |
||||||
|
"degree_class": result.get("degree_class", 0), |
||||||
|
"scoliosis_type": result.get("scoliosis_type", ""), |
||||||
|
"main_cobb": main_cobb, |
||||||
|
"prob_scoliosis": result.get("prob_scoliosis", 0.0), |
||||||
|
}, |
||||||
|
) |
||||||
|
|
||||||
|
return { |
||||||
|
"ok": True, |
||||||
|
"sr_dicom_path": sr_out_path, |
||||||
|
"sc_dicom_path": sc_out_path, |
||||||
|
"conclusion": result["conclusion"], |
||||||
|
"arc_infos": result["arc_infos"], |
||||||
|
"out_dir": run_dir, |
||||||
|
} |
||||||
|
|
||||||
|
if __name__ == "__main__": |
||||||
|
MODEL_PATH = CONFIG.models.detection |
||||||
|
INFER_IMG_PATH = os.environ.get("INFER_IMG_PATH", r"C:\Users\Роман Владимирович\Desktop\XR_SCOLIOS\XR_SCOLIOS\1.2.643.5.1.13.13.12.2.77.8252.00090213030609010011090905030205\1.2.643.5.1.13.13.12.2.77.8252.09051310090608150606061508100113\1.2.643.5.1.13.13.12.2.77.8252.03061304011101150513090811030403.dcm") |
||||||
|
OUT_DIR = CONFIG.results_dir |
||||||
|
|
||||||
|
if not INFER_IMG_PATH: |
||||||
|
sys.exit(0) |
||||||
|
|
||||||
|
model = get_detection_model(model_path=MODEL_PATH) |
||||||
|
out = run_scoliosis_pipeline(INFER_IMG_PATH, model=model, out_dir=OUT_DIR) |
||||||
|
|
||||||
|
if not out.get("ok"): |
||||||
|
sys.exit(1) |
||||||
@ -0,0 +1,13 @@ |
|||||||
|
from scoliosis_arcs import chaklin_degree |
||||||
|
|
||||||
|
def build_scoliosis_description(arc_infos): |
||||||
|
if not arc_infos: |
||||||
|
return "Признаков сколиоза не выявлено." |
||||||
|
lines = [] |
||||||
|
for i, a in enumerate(sorted(arc_infos, key=lambda x: x["cobb_deg"], reverse=True), start=1): |
||||||
|
degree = chaklin_degree(a["cobb_deg"]) |
||||||
|
lines.append( |
||||||
|
f"Дуга {i}: {a['direction']}, уровни {a['upper_end']}-{a['lower_end']}, " |
||||||
|
f"вершина ~ {a['apex_label']}, Cobb={a['cobb_deg']:.1f}°, степень={degree}." |
||||||
|
) |
||||||
|
return " ".join(lines) |
||||||
@ -0,0 +1,311 @@ |
|||||||
|
import numpy as np |
||||||
|
|
||||||
|
from scoliosis_geometry import angle_diff_deg |
||||||
|
|
||||||
|
def fill_zero_gaps(sign: np.ndarray, max_gap: int) -> np.ndarray: |
||||||
|
if max_gap <= 0: |
||||||
|
return sign |
||||||
|
sign = sign.copy() |
||||||
|
n = len(sign) |
||||||
|
i = 0 |
||||||
|
while i < n: |
||||||
|
if sign[i] != 0: |
||||||
|
i += 1 |
||||||
|
continue |
||||||
|
j = i |
||||||
|
while j < n and sign[j] == 0: |
||||||
|
j += 1 |
||||||
|
left = sign[i - 1] if i > 0 else 0 |
||||||
|
right = sign[j] if j < n else 0 |
||||||
|
if (j - i) <= max_gap and left != 0 and left == right: |
||||||
|
sign[i:j] = left |
||||||
|
i = j |
||||||
|
return sign |
||||||
|
|
||||||
|
def runs_of_same_sign(sign: np.ndarray) -> list[tuple[int, int, int]]: |
||||||
|
"Находит непрерывные куски одинакового знака (+1 подряд, -1 подряд)" |
||||||
|
n = len(sign) |
||||||
|
out = [] |
||||||
|
i = 0 |
||||||
|
while i < n: |
||||||
|
if sign[i] == 0: |
||||||
|
i += 1 |
||||||
|
continue |
||||||
|
sgn = int(sign[i]) |
||||||
|
s = i |
||||||
|
while i < n and sign[i] == sgn: |
||||||
|
i += 1 |
||||||
|
e = i - 1 |
||||||
|
out.append((sgn, s, e)) |
||||||
|
return out |
||||||
|
|
||||||
|
def extend_through_zeros(sign: np.ndarray, s: int, e: int, max_extend: int) -> tuple[int, int]: |
||||||
|
"""Если дуга заканчивается рядом с нулями, |
||||||
|
функция слегка "расширяет" дугу в нули, |
||||||
|
чтобы включить край (где dx почти 0)""" |
||||||
|
n = len(sign) |
||||||
|
k = 0 |
||||||
|
while k < max_extend and s > 0 and sign[s - 1] == 0: |
||||||
|
s -= 1 |
||||||
|
k += 1 |
||||||
|
k = 0 |
||||||
|
while k < max_extend and e < n - 1 and sign[e + 1] == 0: |
||||||
|
e += 1 |
||||||
|
k += 1 |
||||||
|
return s, e |
||||||
|
|
||||||
|
def dx_to_sign(dx: np.ndarray, eps: float) -> np.ndarray: |
||||||
|
return np.where(dx > eps, 1, np.where(dx < -eps, -1, 0)).astype(np.int8) |
||||||
|
|
||||||
|
def compute_eps(dx: np.ndarray, eps_px: float, eps_rel: float = 0.01) -> float: |
||||||
|
maxabs = float(np.max(np.abs(dx)) + 1e-6) |
||||||
|
return max(float(eps_px), float(eps_rel) * maxabs) |
||||||
|
|
||||||
|
def detect_arcs_from_dx(dx, eps_px=2.0, min_len=3, zero_gap=1, edge_zero_extend=2): |
||||||
|
"Основная детекция дуг" |
||||||
|
dx = np.asarray(dx, dtype=np.float32) |
||||||
|
if len(dx) < 2: |
||||||
|
return [] |
||||||
|
|
||||||
|
eps = compute_eps(dx, eps_px, eps_rel=0.01) |
||||||
|
sign = dx_to_sign(dx, eps) |
||||||
|
sign = fill_zero_gaps(sign, zero_gap) |
||||||
|
|
||||||
|
arcs = [] |
||||||
|
for sgn, s, e in runs_of_same_sign(sign): |
||||||
|
if (e - s + 1) >= int(min_len): |
||||||
|
s, e = extend_through_zeros(sign, s, e, edge_zero_extend) |
||||||
|
arcs.append((s, e)) |
||||||
|
return arcs |
||||||
|
|
||||||
|
def arc_sign(signal: np.ndarray, s: int, e: int) -> int: |
||||||
|
"""Определяет знак дуги по сигналу на участке (берёт медиану). |
||||||
|
Нужно чтобы знак не ломался из-за шума""" |
||||||
|
return 1 if float(np.median(signal[s:e + 1])) > 0 else -1 |
||||||
|
|
||||||
|
def merge_arcs(arcs, sign_signal, max_gap=0): |
||||||
|
"""Сливает дуги, если: |
||||||
|
- знак одинаковый |
||||||
|
- и они либо пересекаются, либо рядом (max_gap позволяет "почти рядом") |
||||||
|
Это финальная "склейка дуг", чтобы не было дробления""" |
||||||
|
if not arcs: |
||||||
|
return [] |
||||||
|
|
||||||
|
arcs = sorted(arcs, key=lambda t: (t[0], t[1])) |
||||||
|
out = [[arcs[0][0], arcs[0][1], arc_sign(sign_signal, arcs[0][0], arcs[0][1])]] |
||||||
|
|
||||||
|
for s, e in arcs[1:]: |
||||||
|
sgn = arc_sign(sign_signal, s, e) |
||||||
|
ps, pe, psgn = out[-1] |
||||||
|
|
||||||
|
if sgn == psgn and s <= pe + max_gap: |
||||||
|
out[-1][1] = max(pe, e) |
||||||
|
else: |
||||||
|
out.append([s, e, sgn]) |
||||||
|
|
||||||
|
return [(s, e) for s, e, _ in out] |
||||||
|
|
||||||
|
def cobb_for_arc(vertebrae, s, e, dx_cobb, dx_ref_sign): |
||||||
|
idxs = np.arange(s, e + 1) |
||||||
|
apex_i = int(idxs[np.argmax(np.abs(dx_cobb[s:e + 1]))]) |
||||||
|
|
||||||
|
upper_candidates = range(s, apex_i + 1) |
||||||
|
lower_candidates = range(apex_i, e + 1) |
||||||
|
|
||||||
|
best_cobb = -1.0 |
||||||
|
best_pair = (s, e) |
||||||
|
|
||||||
|
for ui in upper_candidates: |
||||||
|
ta = vertebrae[ui]["ang"] |
||||||
|
for li in lower_candidates: |
||||||
|
c = float(angle_diff_deg(ta, vertebrae[li]["ang"])) |
||||||
|
if c > best_cobb: |
||||||
|
best_cobb = c |
||||||
|
best_pair = (ui, li) |
||||||
|
|
||||||
|
upper_idx, lower_idx = best_pair |
||||||
|
|
||||||
|
side_sign = arc_sign(dx_ref_sign, s, e) |
||||||
|
direction = "левосторонний" if side_sign > 0 else "правосторонний" |
||||||
|
|
||||||
|
return { |
||||||
|
"start_idx": int(s), "end_idx": int(e), |
||||||
|
"apex_idx": int(apex_i), "apex_label": vertebrae[apex_i]["l"], |
||||||
|
"direction": direction, |
||||||
|
"side_sign": int(side_sign), |
||||||
|
"cobb_deg": float(best_cobb), |
||||||
|
"upper_end": vertebrae[upper_idx]["l"], |
||||||
|
"lower_end": vertebrae[lower_idx]["l"], |
||||||
|
"upper_idx": int(upper_idx), |
||||||
|
"lower_idx": int(lower_idx), |
||||||
|
} |
||||||
|
|
||||||
|
def arc_len(a): |
||||||
|
"Длина дуги в позвонках: end-start+1" |
||||||
|
return a["end_idx"] - a["start_idx"] + 1 |
||||||
|
|
||||||
|
def is_force(a, force_cobb, force_len): |
||||||
|
""""Форс-правило": если дуга очень большая по Cobb и не слишком короткая |
||||||
|
- считаем её структурной, даже если остальные критерии спорные.""" |
||||||
|
return (a["cobb_deg"] >= force_cobb) and (arc_len(a) >= force_len) |
||||||
|
|
||||||
|
def dedupe_by_range(arcs): |
||||||
|
"Функция удаляет дубликаты по (start_idx, end_idx)" |
||||||
|
seen = set() |
||||||
|
out = [] |
||||||
|
for a in arcs: |
||||||
|
key = (a["start_idx"], a["end_idx"]) |
||||||
|
if key not in seen: |
||||||
|
out.append(a) |
||||||
|
seen.add(key) |
||||||
|
return out |
||||||
|
|
||||||
|
def split_arcs( |
||||||
|
arc_infos, |
||||||
|
# 1) Главная дуга всегда structural, если вообще есть "сколиоз" |
||||||
|
min_cobb_main=1.0, |
||||||
|
|
||||||
|
# 2) Вторая (для S-типа) должна быть не "шумом" |
||||||
|
min_cobb_second_abs=5.0, |
||||||
|
min_cobb_second_rel=0.35, |
||||||
|
|
||||||
|
min_len_struct=4, |
||||||
|
min_len_minor=3, |
||||||
|
min_apex_margin_struct=2, |
||||||
|
min_amp_rel_struct=0.25, |
||||||
|
|
||||||
|
min_cobb_minor=3.0, |
||||||
|
|
||||||
|
force_struct_cobb=40.0, |
||||||
|
force_struct_min_len=3 |
||||||
|
): |
||||||
|
""" |
||||||
|
Разделяет все дуги на: |
||||||
|
- structural (важные, формируют тип C/S) |
||||||
|
- minor (дополнительные) |
||||||
|
""" |
||||||
|
if not arc_infos: |
||||||
|
return [], [] |
||||||
|
|
||||||
|
main = max(arc_infos, key=lambda a: a["cobb_deg"]) |
||||||
|
|
||||||
|
def passes_geom(a): |
||||||
|
amp_rel = a.get("amp_rel") |
||||||
|
if amp_rel is None: |
||||||
|
return False |
||||||
|
|
||||||
|
apex_margin = int(a.get("apex_margin", 999)) |
||||||
|
|
||||||
|
return ( |
||||||
|
(arc_len(a) >= min_len_struct) and |
||||||
|
(apex_margin >= min_apex_margin_struct) and |
||||||
|
(amp_rel >= min_amp_rel_struct) |
||||||
|
) |
||||||
|
|
||||||
|
structural, minor = [], [] |
||||||
|
|
||||||
|
main_is_force = (main["cobb_deg"] >= force_struct_cobb) and (arc_len(main) >= force_struct_min_len) |
||||||
|
|
||||||
|
if main_is_force or (main["cobb_deg"] >= min_cobb_main): |
||||||
|
structural.append(main) |
||||||
|
|
||||||
|
second_thr = max(min_cobb_second_abs, min_cobb_second_rel * float(main["cobb_deg"])) |
||||||
|
main_sign = int(main.get("side_sign", 0)) |
||||||
|
|
||||||
|
for a in arc_infos: |
||||||
|
if a is main: |
||||||
|
continue |
||||||
|
|
||||||
|
length = arc_len(a) |
||||||
|
a_sign = int(a.get("side_sign", 0)) |
||||||
|
|
||||||
|
if is_force(a, force_struct_cobb, force_struct_min_len): |
||||||
|
structural.append(a) |
||||||
|
continue |
||||||
|
|
||||||
|
is_opposite = (main_sign != 0) and (a_sign != 0) and (a_sign != main_sign) |
||||||
|
|
||||||
|
if is_opposite and (a["cobb_deg"] >= second_thr) and passes_geom(a): |
||||||
|
structural.append(a) |
||||||
|
else: |
||||||
|
if length >= min_len_minor and a["cobb_deg"] >= min_cobb_minor: |
||||||
|
minor.append(a) |
||||||
|
|
||||||
|
return dedupe_by_range(structural), dedupe_by_range(minor) |
||||||
|
|
||||||
|
def chaklin_degree(cobb_deg): |
||||||
|
"Переводит Cobb в степень по Чаклину (0/I/II/III/IV)" |
||||||
|
a = float(cobb_deg) |
||||||
|
if a < 1.0: |
||||||
|
return "0 ст. (практически нет)" |
||||||
|
if a <= 10.: |
||||||
|
return "I ст." |
||||||
|
if a <= 25.: |
||||||
|
return "II ст." |
||||||
|
if a <= 50.: |
||||||
|
return "III ст." |
||||||
|
return "IV ст." |
||||||
|
|
||||||
|
def scoliosis_type(structural_arcs): |
||||||
|
if len(structural_arcs) <= 1: |
||||||
|
return "C-сколиоз" |
||||||
|
|
||||||
|
signs = {int(a["side_sign"]) for a in structural_arcs if a.get("side_sign") is not None} |
||||||
|
|
||||||
|
if len(structural_arcs) >= 3 and len(signs) >= 2: |
||||||
|
return "Z-сколиоз" |
||||||
|
if len(signs) >= 2: |
||||||
|
return "S-сколиоз" |
||||||
|
return "C-сколиоз" |
||||||
|
|
||||||
|
def build_conclusion(arc_infos, structural=None, minor=None): |
||||||
|
""" |
||||||
|
Собирает текст заключения: |
||||||
|
- выбирает главную дугу |
||||||
|
- пишет тип, направление, Cobb, степень |
||||||
|
- выводит список структурных дуг |
||||||
|
- выводит список дополнительных дуг (minor) |
||||||
|
""" |
||||||
|
if not arc_infos: |
||||||
|
return "Угловая деформация оси позвоночника не выявлена. Рентгенологических признаков сколиоза нет." |
||||||
|
if structural is None and minor is None: |
||||||
|
structural, minor = split_arcs(arc_infos) |
||||||
|
else: |
||||||
|
structural = structural or [] |
||||||
|
minor = minor or [] |
||||||
|
|
||||||
|
def fmt_arc(i, a, with_len=False): |
||||||
|
arc_degree = chaklin_degree(a["cobb_deg"]) |
||||||
|
s = (f" Дуга {i}: {a['direction']}, уровни {a['upper_end']}-{a['lower_end']}, " |
||||||
|
f"вершина ~ {a['apex_label']}, Cobb={a['cobb_deg']:.1f}°, степень={arc_degree}") |
||||||
|
if with_len: |
||||||
|
length = arc_len(a) |
||||||
|
s += f", длина={length} позв." |
||||||
|
return s + "." |
||||||
|
|
||||||
|
main = max(arc_infos, key=lambda x: x["cobb_deg"]) |
||||||
|
|
||||||
|
scol_type = scoliosis_type(structural) if structural else "не определён (нет структурных дуг)" |
||||||
|
degree = chaklin_degree(main["cobb_deg"]) |
||||||
|
|
||||||
|
lines = [ |
||||||
|
f"1. Тип сколиоза - {scol_type}.", |
||||||
|
f"2. Направление основной дуги - {main['direction']} (по изображению).", |
||||||
|
f"3. Угол деформации (Cobb) основной дуги - {main['cobb_deg']:.1f}°.", |
||||||
|
f"4. Степень сколиоза по углу деформации - {degree}.", |
||||||
|
"", |
||||||
|
"Структурные дуги (учитываются для типа):" |
||||||
|
] |
||||||
|
|
||||||
|
if structural: |
||||||
|
for i, a in enumerate(sorted(structural, key=lambda a: a["cobb_deg"], reverse=True), start=1): |
||||||
|
lines.append(fmt_arc(i, a)) |
||||||
|
else: |
||||||
|
lines.append(" Нет (не прошли критерии структурности).") |
||||||
|
|
||||||
|
if minor: |
||||||
|
lines += ["", "Дополнительные дуги (не учитываются для типа):"] |
||||||
|
for i, a in enumerate(sorted(minor, key=lambda a: a["cobb_deg"], reverse=True), start=1): |
||||||
|
lines.append(fmt_arc(i, a, with_len=True)) |
||||||
|
|
||||||
|
return "\n".join(lines) |
||||||
@ -0,0 +1,130 @@ |
|||||||
|
import numpy as np |
||||||
|
|
||||||
|
def edge_angle_deg(p1, p2): |
||||||
|
"Находит угол наклона отрезка p1→p2 в градусах (от -180 до +180)." |
||||||
|
dx = float(p2[0] - p1[0]) |
||||||
|
dy = float(p2[1] - p1[1]) |
||||||
|
return np.degrees(np.arctan2(dy, dx)) |
||||||
|
|
||||||
|
def normalize_angle_minus90_90(a): |
||||||
|
"Приводит угол к диапазону [-90, 90)." |
||||||
|
return (a + 90.0) % 180.0 - 90.0 |
||||||
|
|
||||||
|
def angle_diff_deg(a, b): |
||||||
|
"Возвращает насколько отличаются две линии по углу, но только 'острый' вариант (0..90)" |
||||||
|
d = abs(a - b) % 180.0 |
||||||
|
if d > 90.0: |
||||||
|
d = 180.0 - d |
||||||
|
return d |
||||||
|
|
||||||
|
def order_points_ccw(pts): |
||||||
|
"Приводит 4 точки OBB к стабильному порядку по кругу" |
||||||
|
pts = np.asarray(pts, dtype=np.float32) |
||||||
|
c = pts.mean(axis=0) |
||||||
|
ang = np.arctan2(pts[:, 1] - c[1], pts[:, 0] - c[0]) |
||||||
|
return pts[np.argsort(ang)] |
||||||
|
|
||||||
|
def vertebra_endplates_angles(obb_pts): |
||||||
|
"Нахождит углов верхней и нижней замыкательных пластинок" |
||||||
|
p = order_points_ccw(obb_pts) |
||||||
|
|
||||||
|
edges = [] |
||||||
|
for i in range(4): |
||||||
|
a = p[i] |
||||||
|
b = p[(i + 1) % 4] |
||||||
|
|
||||||
|
ang = normalize_angle_minus90_90(edge_angle_deg(a, b)) |
||||||
|
mean_y = float((a[1] + b[1]) / 2.0) |
||||||
|
score = abs(ang) |
||||||
|
|
||||||
|
edges.append((score, mean_y, float(ang))) |
||||||
|
|
||||||
|
edges.sort(key=lambda t: t[0]) |
||||||
|
e1, e2 = edges[0], edges[1] |
||||||
|
top, bottom = (e1, e2) if e1[1] <= e2[1] else (e2, e1) |
||||||
|
|
||||||
|
return top[2], bottom[2] |
||||||
|
|
||||||
|
def fit_line_x_of_y(y, x, eps=1e-6): |
||||||
|
"Строит прямую вида x = a*y + b по точкам" |
||||||
|
if np.std(y) < eps: |
||||||
|
return 0.0, float(np.mean(x)) |
||||||
|
a, b = np.polyfit(y, x, 1) |
||||||
|
return float(a), float(b) |
||||||
|
|
||||||
|
def fit_spine_axis_dx(vertebrae): |
||||||
|
"""Строит глобальную ось позвоночника (одна прямая по всем центрам). |
||||||
|
Возвращает dx: для каждого позвонка разницу показывая, |
||||||
|
насколько позвонок левее/правее глобальной оси""" |
||||||
|
centers = np.array([v["c"] for v in vertebrae], dtype=np.float32) |
||||||
|
xs, ys = centers[:, 0], centers[:, 1] |
||||||
|
|
||||||
|
a, b = fit_line_x_of_y(ys, xs) |
||||||
|
return xs - (a * ys + b) |
||||||
|
|
||||||
|
def fit_spine_axis_dx_local(vertebrae, window=7): |
||||||
|
"Вычисляет локальные изгибы относительно соседей" |
||||||
|
centers = np.array([v["c"] for v in vertebrae], dtype=np.float32) |
||||||
|
xs, ys = centers[:, 0], centers[:, 1] |
||||||
|
n = len(xs) |
||||||
|
dx = np.zeros(n, dtype=np.float32) |
||||||
|
|
||||||
|
half = window // 2 |
||||||
|
for i in range(n): |
||||||
|
s = max(0, i - half) |
||||||
|
e = min(n, i + half + 1) |
||||||
|
a, b = fit_line_x_of_y(ys[s:e], xs[s:e]) |
||||||
|
dx[i] = xs[i] - (a * ys[i] + b) |
||||||
|
return dx |
||||||
|
|
||||||
|
def smooth_1d(x, iters=3, alpha=0.25): |
||||||
|
"Простое сглаживание 1D-сигнала (dx)" |
||||||
|
x = x.astype(np.float32).copy() |
||||||
|
for _ in range(int(iters)): |
||||||
|
x[1:-1] = x[1:-1] + alpha * (x[:-2] - 2 * x[1:-1] + x[2:]) |
||||||
|
return x |
||||||
|
|
||||||
|
def fit_spine_axis_dx_endpoints(vertebrae): |
||||||
|
"Строит ось как линию через первый и последний позвонок (а не через регрессию)" |
||||||
|
centers = np.array([v["c"] for v in vertebrae], dtype=np.float32) |
||||||
|
xs, ys = centers[:, 0], centers[:, 1] |
||||||
|
|
||||||
|
x0, y0 = float(xs[0]), float(ys[0]) |
||||||
|
x1, y1 = float(xs[-1]), float(ys[-1]) |
||||||
|
|
||||||
|
if abs(y1 - y0) < 1e-6: |
||||||
|
return xs - float(np.mean(xs)) |
||||||
|
|
||||||
|
t = (ys - y0) / (y1 - y0) |
||||||
|
x_line = x0 + t * (x1 - x0) |
||||||
|
return xs - x_line |
||||||
|
|
||||||
|
def _smooth_chain(points, window=5): |
||||||
|
"""сглаживает цепочку точек скользящим средним по окну window. |
||||||
|
Делает окно нечётным, берёт среднее по соседям и возвращает сглаженные точки""" |
||||||
|
pts = np.asarray(points, dtype=np.float32) |
||||||
|
if len(pts) < 3 or window <= 2: |
||||||
|
return pts |
||||||
|
window = int(window) |
||||||
|
if window % 2 == 0: |
||||||
|
window += 1 |
||||||
|
half = window // 2 |
||||||
|
out = pts.copy() |
||||||
|
for i in range(half, len(pts) - half): |
||||||
|
out[i] = np.mean(pts[i - half:i + half + 1], axis=0) |
||||||
|
return out |
||||||
|
|
||||||
|
def arc_centerline(vertebrae, info, smooth_window=5): |
||||||
|
"""Строит центральную линию дуги""" |
||||||
|
s = info.get("upper_idx", info["start_idx"]) |
||||||
|
e = info.get("lower_idx", info["end_idx"]) |
||||||
|
if s > e: |
||||||
|
s, e = e, s |
||||||
|
centers = [vertebrae[k]["c"] for k in range(s, e + 1)] |
||||||
|
if not centers: |
||||||
|
return None |
||||||
|
centers = np.array(centers, dtype=np.float32) |
||||||
|
centers = centers[np.argsort(centers[:, 1])] |
||||||
|
if smooth_window and smooth_window > 2: |
||||||
|
centers = _smooth_chain(centers, window=smooth_window) |
||||||
|
return centers |
||||||
@ -0,0 +1,19 @@ |
|||||||
|
import cv2 |
||||||
|
import numpy as np |
||||||
|
|
||||||
|
def draw_arc_contours( |
||||||
|
img_bgr: np.ndarray, |
||||||
|
vertebrae, |
||||||
|
arc_infos, |
||||||
|
colors=((255, 0, 255), (0, 255, 255), (255, 255, 0)), |
||||||
|
): |
||||||
|
"""Визуализация контура дуги деформации""" |
||||||
|
vis = img_bgr.copy() |
||||||
|
for i, info in enumerate(arc_infos): |
||||||
|
pts = info.get("centerline_pts") |
||||||
|
if pts is None: |
||||||
|
continue |
||||||
|
pts_i = np.round(pts).astype(np.int32).reshape(-1, 1, 2) |
||||||
|
color = colors[i % len(colors)] |
||||||
|
cv2.polylines(vis, [pts_i], isClosed=False, color=color, thickness=3) |
||||||
|
return vis |
||||||
Loading…
Reference in new issue